
SimpleEdit - an API-Introduction

Patrick Gotthardt

February 8, 2006

Abstract
This documents intention is to tell you how to use the SimpleEdit-

API, thus it is written for Java-Developers that'd like to work on the
core of it (or write some plugins).

You'll learn about the most fundamental APIs that you'll have to
know if you'd like to work with SimpleEdit.

1



Contents

1 org.simpleedit.SimpleEdit - the Application-class 3

2 org.simpleedit.WindowManager - the entry-point for every
window 3

3 org.simpleedit.Lookup - the ServiceProvider 4

4 org.simpleedit.Registry - To store your con�guration 6

5 The EventBus 6

6 The Virtual Filesystem (VFS) 8

7 PgsAction - the action system 10

8 To be continued 12

2



1 org.simpleedit.SimpleEdit - the Application-

class

This is the Application-class of SimpleEdit. It also acts as EventBus for all
application-level events, but we'll come to this point later when we discuss
the Application-Event-System.

Anyway, it might be a very good idea to make yourself familiar with this
class. It o�ers some utility-functions (I18N-related) that could be of great
use for you.

As an example: Using the getBundle-Method, you can easily load a Re-
sourceBundle for your speci�c class:

ResourceBundle bundle = SimpleEdit.getBundle(MyClass.class);

This will look for a bundle named "Bundle.properties" (or related Bun-
dles - just like the ResourceBundle-mechanism works) within the package of
MyClass. In case you don't want to get a complete bundle, you can always call
SimpleEdit.getString(Class clazz, String key, String ... args.

2 org.simpleedit.WindowManager - the entry-

point for every window

Every DockableFrame (that's what the dockables are called in our docking-
framework) should be a Singleton if it is somehow possible. There are, of
course, cases where it'd be impossible to use it as an singleton, but if it is
somehow possible, try to apply to this standard. Singletons are used all over
the place in SimpleEdit.

This class supports you with the Singleton-concept as it provides the
methods to access the instance of an DockableFrame. Do not use anything
else for this purpose. WindowManager keeps a cache of instances of the ini-
tiated windows, but it keeps it locally, within itself, thus it won't know
anything about other Singleton-Style accesses you o�er or use. Access a
DockableFrame that is to be used as a Singleton only from WindowMan-
ager.

// somewhere

public class MyDockableFrame extends DockableFrame {

// ...

}

3



// to access it

MyDockableFrame frame = WindowManager.get(MyDockableFrame.class);

// do something with it - for example: add it to the Application

// (if you've not done it already)

WindowManager.getManager().addFrame(frame);

// you'll most likely also want to add a menuitem for it in the "view"-menu:

WindowManager.addWindowAction(frame);

Every DockableFrame must have a unique ID by which it is accessable
through the DockingManager returned by WindowManager.getManager().
We believe using Strings for this task is somewhat risky and a source of
errors, thus it is discouraged to use them. Use the Singleton-Access whenever
possible.

3 org.simpleedit.Lookup - the ServiceProvider

This section is most propably the most important. You can't extend Sim-
pleEdit without knowing about the Lookup-class. The Lookup-class is an
implementation of the ServiceProvider-pattern, thus it is used for decoupling
of parts of SimpleEdit to allow others to easily extend and modify them. I've
been inspired by the NetBeans-Lookup-mechanism while writing the API for
this one, but I've taken my own route when it came to implementation de-
tails. Let's examine what this means for you.

The Lookup class itself is an abstract class that'll provide a way to get a
default implementation of it. Most likely you'll be using DefaultLookup. I'll
give you an example:

FileContext ctx = Lookup.getDefault().lookup(FileContext.class,

someFile);

You don't need to know from where we got that FileContext-class. All
you need to know is that you got one that works in your context (someFile).
Note that it is possible that you won't get an service you requested. It is
possible, though unlikely as it is encouraged to provide an default implemen-
tation for every service that works for every context.

While it is true that most of the time you don't need to know where you
got that service from, it is important to know how to provide a way to access
your service if you want to provide one.

Let's imagine you would want to provide a service called "MyFunnySer-
vice" that would o�er a method "myFunnyMethod". What would you have to

4



do to integrate it? The �rst step is to implement/de�ne the MyFunnyService-
class. This might be an interface, but it could also be a concrete class (as
FileContext is).

public interface MyFunnyService {

public void myFunnyMethod();

}

The next step would be to implement a ServiceProvider for it. This one
should return a MyFunnyService regardless of the speci�ed context (actually
the context might be null) anyway. A ServiceProvider is supposed to return
null if it isn't responsible within this context.

public class MyFunnyServiceProvider implements ServiceProvider,

MyFunnyService {

public Object getService(Object context) {

return this;

}

public void myFunnyMethod() {

System.out.println("I'm so funny!");

}

}

As you can see this ServiceProvider implements the Service-Interface him-
self. In most cases you won't want to do this, but in case you want to: It's
possible.

Now, how do you register it? That's easy:

Lookup.getDefault().register(MyFunnyService.class,

new MyFunnyServiceProvider());

And from that second on, you can use it like this:

Lookup.getDefault().lookup(MyFunnyService.class).myFunnyMethod();

If you're o�ering some service you should document it for other developers
so they know how to extend/modify your code. This is especially important
for the core of SimpleEdit.

It might be worth to point out that every class can have its own Lookup. If
it o�ers a Lookup, it should implement the org.simpleedit.LookupProvider-
interface.

5



4 org.simpleedit.Registry - To store your con-

�guration

This class is pretty important as well. It is highly discouraged to use Prop-
erties or some other Java-internal API to store your module con�guration.
Instead you should be using this extremly powerful API.

Internally it uses the XStream-API to serialize every object you'd like to
store within it, thus it enables you to store every data-model directly. The
usage is pretty simple, too.

// get the registry for your plugin / application part

Registry reg = Registry.getInstance("my.plugin");

// get data data

System.out.printf("You've started this plugin %s times!%n",

reg.getInt("startcounter", 0)+1);

// set data

reg.put("startcounter", reg.getInt("startcounter", 0)+1);

// store it to disk

reg.store();

As I said: You could possibly put everything into it. It's worth to read the
documentation of this class. Actually it is one of those classes that've already
been documented yet. Most noticable: It implements the Map-interface, thus
it has an known API.

5 The EventBus

When we've discussed the SimpleEdit-class I already mentioned that it was
the Entry-point to the ApplicationEvent-system. I won't talk about why we
need such a system, but rather explain what it does and how you can use it.

Certain parts of SimpleEdit send or listen to speci�c ApplicationEvents.
For example: The �lebrowser will send an FileOpeningRequestEvent once a
�le is selected to be opened. The EditorPanel (the component that contains
the editors) will listen to this event and open an Editor for this request - by
using the Lookup-API we discussed earlier.

Ok, how do you use it? I know that I'm repeating myself, but I've to say
it once again: It's extemly easy.

// define the event class (or reuse an existing one)

public class MyCustomEvent extends ApplicationEvent {

6



// ...

}

// fire it somewhere

SimpleEdit.fireApplicationEvent(new MyCustomEvent());

This is, how you can de�ne and �re a custom ApplicationEvent.
Now, how do you listen to it? There are two ways to do this. And one of

them has an descendant, thus we're at three ways. There are good reasons
for this amount of di�erent ways to get one task done. The preferred way to
do it is by using Annotations.

// define the listener

public class MyCustomEventHandler extends ApplicationHandler {

@EventHandler(MyCustomEvent.class)

public void someMethod(MyCustomEvent event) {

// do something

}

}

// register it (automatic inspection of all important events)

SimpleEdit.addApplicationListener(new MyCustomEventHandler());

// register it (manual specification of events

// - the list of events is a var-arg)

SimpleEdit.addApplicationListener(new MyCustomEventHandler(),

MyCustomEvent.class);

Both ways to register a listener in the Bus is �ne. Now, this approach in-
troduces problems when you don't want to/can't extend AnnotationEventLis-
tener. In this case you'd have to change the registration code to this (for the
listener itself: just erase the extends-stu�):

SimpleEdit.addApplicationListener(new ApplicationHandler(

new MyCustomEventHandler()));

That's it. Ok... I said there was a third way, and here it is: Application-
Handler is just an implementation of the ApplicationListener. If you want to
listen to multiple events in just one method, this is the way to go: Implement
your own ApplicationListener.

The above code would look like this:

// define the listener

7



public class MyCustomEventHandler implements ApplicationListener {

public void handleEvent(ApplicationEvent event) {

// do something

}

}

// register it (this time this is the only way to do it!)

SimpleEdit.addApplicationListener(new MyCustomEventHandler(),

MyCustomEvent.class);

As our Annotation-based system works on classes there shouldn't be any
risk of runtime-problems, thus it is the preferred way (including automatic-
registration). Use the low-level way whenever you can't use one of the
Annotation-based ways.

6 The Virtual Filesystem (VFS)

This topic is one of the most important, too. SimpleEdit isn't bound to
the local �lesystem at all. By leveraging a VFS we can o�er support for
any �lesystem. It is, however, only implemented for the local �lesystem and
ftp-servers, currently. More implementations will follow.

I won't discuss the process of implementing the API here and I can't
discuss every part of the user-API now, so I'll keep it short. The API consists
of a few interfaces and a few classes. The interfaces are VFSEntry, VFSFile,
VFSDirectory and VirtualFileSystem.

VFSEntry is the base interface for all entries that the �lesystem contains.
It de�nes convenient methods such as getName() and toURI(). VFSFile
represents a �le within a �lesystem. Thus it provides special methods to
access the contents of a �le. It is important to remember that you have to
cleanup after working with Streams from a �le. For this purpose you'll have
to do something like this:

InputStream is = null;

try {

is = vfsFile.getInputStream();

// do something with is

} catch(Exception e) {

e.printStackTrace();

} finally {

if(is != null) {

try {

8



is.close();

} catch(Exception e) {

e.printStackTrace();

} finally {

vfsFile.getFileSystem()

.completePendingCommand();

}

}

}

This code is extremly ugly, thus we provide utilities for this task. As an
example, the above code could be written as:

new ReadAccess(file) {

protected void read(InputStream in)

throws IOException {

// do something with is

}

};

You could have written it like this, too:

// define the class

public class MyReadAccess extends ReadAccess {

protected void read(InputStream in)

throws IOException {

// do something with is

}

}

// use it

ReadAccess ra = new MyReadAccess();

ra.read(file);

This enables reuse of readers. There's a WriteAccess as well.
The next interface we want to talk about is the VFSDirectory. This one

represents directories on your �lesystem. It provides methods to access child
entries and some shortcuts for creation of �les and directories.

VirtualFileSystem is the entry-point to any �lesystem. It supports listen-
ers on changes and some other neat stu� (like �le/directory-creation). The
methods in VFSDirectory are most likely just shortcuts with simpler syntax
for the methods provided by this class.

How do you get one? That's what the FileSystem-class is good for.

9



VirtualFileSystem vfs = FileSystem.getFileSystem(

"ftp://user:pass@host");

VFSEntry entry = vfs.getChild("/some/file.txt");

if(entry.exists() && (entry instanceof VFSFile)) {

// ra is the ReadAccess we wrote earlier on

ra.read((VFSFile)entry);

}

That's a pretty complete example, but it could've been written easier as
FileSystem o�ers methods to directly retrieve an entry of a �lesystem. Note
that the above example would require a try-catch-block - in case your URI-
format is wrong.

You can register your own �lesystem to this FileSystem-class, too. Prede-
�ned formats are "local://", "�le://" (both for the local system) and "ftp://"
(for FTP, obviously).

When working with the VFS it is worth it to take a look at the VFSUtil-
class as well. It provides methods for some tasks that can ease your work.

The VFS also has some utilities to implement a Visitor-Pattern (to keep
this true: it isn't a "real" Visitor-Pattern, just an utility to make crawling a
directory-tree easier). This is, how you'd use it, to visit all �les in a speci�c
directory (recursiv):

VFSEntry entry = LocalFileSystem.getInstance().getEntry(

"/home/pago/tests");

VFSVisitor visitor = new RecursiveVisitor() {

public void visit(VFSFile file) {

System.out.println(file.getPath());

}

};

visitor.visit(entry);

RecursiveVisitor extends the AbstractVFSVisitor (casts VFSEntry
to VFSFile or VFSDirectory) which implements VFSVisitor. In case you
want to write the paths of the directory visited as well, make sure you call
super.visit(dir) as well, otherwise the recursive iteration won't work.

7 PgsAction - the action system

This topic would cover an entire document on its own, so I'll keep it as short
as possible.

10



The PgsAction-package is a superset of the Swing-Action-API. The ver-
sion we're using in SimpleEdit is even more advanced as it can use Java
5.0-features (namely annotations).

This document will be published together with an alpha release of Pgs-
Actions, thus I'll concentrate on the changes we did: In order to integrate
the API tightly into SimpleEdit we had to write some implementations more
speci�c. Instead of com.pagosoft.action.AbstractSystemAction you'll
be using org.simpleedit.action.SystemAction. Instead of
com.pagosoft.action.ActionContainer you'll use org.simpleedit.action.SimpleActionContainer.
Instead of
com.pagosoft.action.AbstractStateAction you'll use org.simpleedit.action.SimpleAbstractStateAction.
The other parts stay the same. The most important change is the resource-
loading (which we might rewrite anyway thus rendering these classes obsolete,
but for now: stay with them).

Want an example? Ok... here it goes:

// define action

public class MyAction extends SystemAction {

public MyAction() {

super("myaction");

}

public void actionPerformed(ActionEvent e) {

// do something

}

}

// add it to some menu

FileMenuAction fileMenu = ActionManager.getDefaultInstance()

.getActionContainer(FileMenuAction.class);

fileMenu.add(MyAction.class);

Actions should be Singletons, don't forget that.
I said we're o�ering an additional API, so here we go:

// define the class

public class ActionHandler extends ActionObject {

@ActionMethod(id="doSomething")

public void doSomething() {

// just do it

}

}

11



// use it

ActionHandler handler = new ActionHandler();

JButton myButton = new JButton(handler.getAction("doSomething"));

It is highly discouraged to use this API if you want to develop an extensible
part of SimpleEdit, but it's �ne for dialogs and the like.

You don't need to extend ActionObject, but it would be easier for your-
self. Instead you can use ActionFactory like this (assuming it does not extend
ActionObject):

Map<String, Action> handler = ActionFactory.createActionMap(

new ActionHandler());

JButton myButton = new JButton(handler.get("doSomething"));

In this case, you'll have to keep a cache for yourself. If possible, use
ActionObject.

8 To be continued

This document is not yet nearly complete. We've not even discussed the
API for the Text-component, but right now you should have an impression
on how the SimpleEdit-API works for you and where it does help you.

Later on there will be a Node-API that will ease the creation of Mod-
els for trees, lists, tables and comboboxes. This API already exists, but it
has not yet been implemented for the GUI part. You can �nd it in the
package com.pagosoft.nodes. Once it's �nished, this code will move into
org.simpleedit.nodes or will be moved into a separate package, o�ered by
Pagosoft.

12


